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FUNCTIONAL DIFFERENCE EQUATIONS AND AN EPIDEMIC MODEL

Lawrence Turyn

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
_ Brown University
Providence, Rhode Island 02912

ABSTRACT

We consider an epidemic model of the form S+ I > S with
history on (-»,0]). The well-known threshold phenomenon is
discussed in terms of the stability of a functional difference
equation, also known as the translation-invariant renewal equation.
Since the difference equation has.infinite delay, the work of
other authors on finite-delay problems is extended. Also, epidemic
models with spatial effects are discussed by extension of the

results to difference equations in a Banach space.
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FUNCTIONAL DIFFERENCE EQUATIONS AND AN EPIDEMIC MODEL

Recently there has been interest in a model for the evolution

of a disease given by the equation
d < 0 d
(1) g s = s [ ) g seeoran,

where S(t) is the density of éusceptible individuals and the
right hand side allows for infectious contacts at the present time
due to the past history of infections. Equation (1) is an

S » I model, that is, it allows only for susceptibles to become
infected. Diekmann [2,3] has considered this model and also has
allowed spatial effects. Inan S + I -+ S model, where one allows

for recovery (without immunity) of infecteds, one would add a term
0
J Cc(®) %f S(t+0)d® to the right-hand side of equation (1).

The '"threshold phenomenon" of Kermack and McKendrick is well-
known in mathematical epidemiology; see, for example, Bailey [1]
or Hoppensteadt [11]. For equation (1) the appropriate initial data

consists of the value k = S0 = S(0) and the initial history

$(8) = g S(8), 0 € (-»,0]. The epidemiological model is realistic
0> 0, ¢(®) <0 and B(®) >0 for © € (-=»,0], and
B(-)¢(-) 2 0. With these assumptions there always exists
lim,,S(t;9,5,) defn

be stated as: There exists an S* such that

only if S

Sw(¢;So). The threshold phenomenon can

(a) For fixed Sy > S*, limy, S _(#;Sy) > S;.

. L I . .
(b) For fixed S0 < S, 11m¢*08w(¢,80) SO'
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Here, lim¢+0 stands for the limit in the function space where
the initial history ¢ comes from.
The equation (1) can be transformed into an equivalent

dgfn

functional difference equation for y(t) gf S(t) by noting

: t
that S(t) = SO_+ j y(t)dt., Specifically, (1) is equivalent to
0

@ v -k [ 3Oy - (I?tyct+e)de)(fo

-00

B(9)y (£+0)d8 ),

where we have notated k = S0 so as to distinguish S0 as a
parameter to be adjusted. We will show that the zero function

$(0) =0 for O € (-»,0] 1is, for equation (2),
(a') uniformly asymptotically stable for k < s*

(b') unstable for k > S*

(') s* = 1/(j?wB(e)de),

and then we will show how the stability results (a'), (b') for

equation (2) imply the threshold phenomenon (a), (b) for equation (1).

Thus, we will show that the threshold phenomenon is a particular
case of stability results for functional difference equations.

The greater part of the mathematical analysis of this paper
will be the discussion of a particular class of functional
difference equations which will be wide enough to obtain the result

of the threshold pehnomenon. We will consider the equation

|

.

38
q 249
."i '33 .’.."-c§
GIREAREEFL
:‘355—4 a <
'.',“°= o
;‘i ﬁ 8 g"g g ¢
o e g e e : X




where Ye is a function of 0 € (-»,0] defined by yt(e) = y(t+6)

and D and G(t,*) are defined on function ¢: (-=,0] > R", with
0
D¢ = ¢(0) - [ eYeA(9)¢(9)d0 so that D 1is linear and of a re-

. X
stricted nature. Here, A(9) is R (real n*n matrix)-valued.

The positive real number Y is assumed to be fixed and

0
[ |A(8))d® < =, where |-| is the Euclidean norm for R" and
0

. - x » .
the corresponding matrix norm on R, By consideration of the

spectral theory developed below it will hopefully become clear why the

0
special form eYeA(G), with j |A(8)]|d® < =, is assumed for the

kernel of the integral term in the linear operator D.

Since (3) has infinite delay some cavre must be taken in the
assumptions made about the class of equations and class of solutions
to be considered. Infinite delay in retarded functional differential
equations has been considered by several authors, including Hale [S5],
Hale and Kato [7], and Naito [12]. We will look for solutions Ye
in the space

defn n Yo
C, = {¢: (=,0] +R'| ¢ is continuous and there exists 1limy, .e ¢(9))}.

Y
With D restricted to the above special form it would not be

difficult to work in the space R" x L , where

P,Y
R" x L - wh L = 0 PYe p
b,y Where Lo {¢|j_“ ePY?4(0)|Pdo < =},

but we will not discuss this further. Also, it should be possible to
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develop a theory for the abstract spaces of Hale-Kato type, as in
Hale and Kato [7] and Naito [12].

Note that for every ¢ € C, we have (a) » > |¢|Y def“

defn supe<0eYel¢(9)l, and (b) the function eY'¢(-) is uniformly

continuous for 6 € (-«,0]. C is a Banach space when given the

Y
norm |-|Y. Because
0
oo < (1 + [ _1ac)iae) Jel,,
- Q0
D: CY-->.1Rn is a bounded linear operator.

For the general initial value problem (4) with initial data

Yo = ¢ € CY we allow any D: CY »R" of the form

D¢ = ¢(0) - IO eYeA(9)¢(6)d9 with IO [A(®)[d0 < =
and we allow any G € Cl(]R+ x CY;ZRP) for which the Frechet differential
differential D¢G(-,') is bounded on all sets R' x B, B any
bounded subset of Cy. For any initial data ¢ € CY for which
D$¢ = G(0,$) there exists a unique global solution Yer i.e.,
Dy, = G(t,y,) and limt*0+|yt'¢|Y = 0, as can be proven using the
contraction mapping theorem.

When G 0, so that (4) is linear, there is a unique global

solution Ye = yt(¢) for all initial data ¢ satisfying D¢ = 0.
Defining TD(t)¢ = Y¢r We find that TD(t) is a semi-group of

defn
bounded linear operators on the Banach space 4 = {¢ € cy; Dd = 0}

with the |-|Y norm. One can show that TD(t) is generated by

N2t A Rt A0 A1 -




the operator AD defined by AD¢ = 5, o= %g ,.on its domain

2 = {0 € 2 ¢ € B,

The spectral properties of TD(t) can be found by examining

0 (A+Y)6
the characteristic equation 0 = det A(A) = det(I - [ e A(B)de),

e
as is made rigorous by considering the generator AD and the
particular nature of the equation Dyt = 0. Following Naito [12],
let us notate € _, = {A: Re A > -Y}. Given a linear operator B,
we say that X is in (a) the resolvent of B if (>\I-B)'1 is

we ll-defined and bounded, (b) the spectrum of B if it is not in

the resolvent. The point spectrum of B consists of those A

for which (AI-B) has a non-trivial null-space.

Theorem 1: (i) The resolvent of A is {2 € E_Y: det A(X) # 0}
(ii) The point spectrum of AD consists of
{\ € E_Y: det A(A) = 0}, and if det A(-Y) = 0, also
A= -y,

(iii) The spectrum of AD contains E\E_Y.

(iv) AD has compact resolvent, i.e. (AD-AI)'1 is compact for
all X for which it is a bounded linear operator on Cy.
As a consequence, the generalized eigenspace
) 9efn Uj=1/((AD-A1)k) is of finite dimension,

A denoting the null-space.

For (iv), use the compactification [-=,0] = (-»,0] v {-w}, the
Arzela-Ascoli Theorem, and a well-known theorem on projections
(found, for example, in Hille and Phillips (10, p. 182]).

Using the spectral properties of AD it is possible to obtain
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some, but not all, of the spectral properties of TD(t). From
Hille and Phillips [10, p. 467]) we have PO(TD(t))\{O} = exp(Po(AD)-t),
where Po stands for the point spectrum. For the rest of the
spectrum we must study the particular equation Dyt = 0, rather
than relying only on abstract results for semi-groups.
Define the‘difference operator DO: CY + R" by D0¢ = ¢(0),
and denote by TDO(t) the semi-group for the difference equation
y(t) = Doyt = 0 defined on the Banach space .ﬁb defn {¢ € CY: DO¢ = 0}

with the norm. As an aside, note that ITD (t)¢|Y < e'Yt|¢|Y
0

-1,
for all ¢ € QO. Define the projection V¥: B~ 2, by

(¥ 2) () = 4 () - ¢(0).

Lemma 2: TD(t)
on 4.

Let now |-| also stand for the operator norm on L(4) =

TD (t)‘i’0 + U(t) with U(t) completely continuous
0

(the space of all bounded linear operators on ). Using Lemma 2
and arguments involving the so-called 'essential spectrum', one can
prove, as was done by Hale [6, p. 285] and Henry [9, p. 117] for

finite delay:

Theorem 3: Let ap = max[-Y,sup{Re A: det A(A) = 0}]. Then for
all & > a; there exists K = K(2) such that |TD(t)| < ke®t for

all t > 0. One calls ap the order of the semi-group TD(t).

Theorem 4: For any -y <& < B < ay the set
A= {\A: a <Re A < B, det A(A) = 0} has only finitely-many points.

For Theorem 4 a more specific reference is Hale [6, p. 309].
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Using knowledge of the linear problem Dyt = 0 we can discuss
the nonlinear problem (3) by obtaining the variation of constants
formula found below in Theorem 5. Let X(t) be the fundamental
matrix, i.e. the solution in :m“x“ of the equation DXt = 1 for

0 for

t >0 with initial data X; given by X (0) = I, X (8)

9 <0,

Theorem 5: The general solution Ye € CY of the inhomogeneous
equation Dyt = h(t), Yo = $ € CY with h(t) continuous for

t >0 and with D¢ = h(0) is given by
t+
(3) X¢ - Xoh(t) = TD(t)(¢-X0h(0)) - JO [dSTD(t-s)XO]h(s).

Let us assume now that G(t,0) = 0, D¢G(t,0) = 0, and that
G(t,-) depends weakly on the value of ¢(0), specifically in the

sense that
(5) G(t, + X b) = G(t,4), for all ¢ € c, and b € R".

Define a new space PCY = CY ® (the span of the columns of XO)

with norm [¢ + Xgb[, = || + |b] _, as in Hale and Martinez-

Y
Amores [8]. Using estimates on X(:) and the measures dSX(--s),
as in Hale [6, p. 303), the space PCY’ the variation of constants
formula, and Gronwall's inequality, one can justify linearization

using

TR




Theorem 6: Assume G € C10R+XCYﬂRn), G(t,0) = 0, D,G(t,0) = 0,

and D¢G(-,-) is bounded on all sets R' x B, B bounded in Cy,

and that G satisfies (5). Assume that |G(t,9)] < Mg(l¢ly)
where M 1is a positive real number and g 1is continuously
differentiable with g(0) = 0 = g'(0). If ap < 0 then 0 € CY

is uniformly asymptotically stable for equation (3).

Theorem 7 (Instability): Make the same assumptions on G as in

Theorem 6. If >0 then 0 € CY is unstable for equation (3).

ap
We have restricted ourselves to D of the form

0

0
D6 = 6(0) - j eT9A(8)9 (9)d® with f |A(0)]d8 < .

A1l of the above results can be achieved when one allows point
-Yr 0
delays, i.e. for D¢ = ¢(0) - Zke kAk¢(-rk) - J eYeA(6)¢(6)d9

0
with EkIAkI + I |[A(6)]d® < », as long as one assumes

0 <1, < r, < ... (or, more generally, that D 1is "atomic at zero").

1
We discuss the case with point delays in a paper currently in

preparation.

Now we can.show that the threshold phenomenon for equation (1)
is equivalent to the question of the stability of equation (2).
Since equation (2) is an example of equation (3) for which G
satisfies the assumptions of Theorem 6, the stability of (2) can be
discussed by examining the stability of the linear difference
operator D(k) giveg by D(k)$ = ¢(0) - k Jo B(0)9(9)d®, as long

as we assume that J e-YelB(e)lde < » for some constant Y > 0.
- Q0

C e e,
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0
If s* = 1/([ B(e)de) then it is easy to see that (a) k > s*
implies aD(k) > 0, and (b) k < s* implies ) (k) < 0. Using

0
S(t) = S, + I v(t+0)d0, where v(t) = %f S(t) and v solves (2),
-t

along with Theorems (6), (7), we can interpret the threshold
phenomenon as a particular case of results in the stability theory
of functional difference equations: For k < S*, and thus ap (k) <0,

it is dear that S(») = Sy * 0(|¢|Y), where ¢(8) = v(0) = %E S(9)

for 9(-»,0}. For k > S*, and thus ap (k) > 0, the semi-group

A A0

TD(t) has eigensolutions ext¢ , Where ¢x(9) = e is in C

Y
for some values of A with Re X > 0. 1In fact, XA = ap is such

a value! This latter property follows from the fact that TD(t) is
a positive operator on the ordered Banach space Cy, since A(®) > 0
0 € (-»,0]. Let $ = ¢aD, for notational convenience. For the
epidemiological problem, the initial history ¢ satisfies

$(8) <0, © € (-»,0], and ¢(+) # 0, so that there is non-zero
projection of ¢ onto the subspace [$] of CY spanned by $.
From this, it follows that lim¢+osw(¢;so) < S0 whenever S0 > S*,
by using the general saddle-point theory, as in Hale [4, p. 157]

or Henry's forthcoming book, Geometric Theory of Partial Differential

Equations.

Diekmann [3] has allowed spatial effects in an S + I model

0
to arrive at the equation %f S(t,x) = S(t,x)-J I B(0;x,6)S(t+6,8)dEdo
- Q

in some region @ cR™. If X is the ordered Banach space C(Q)

we can re-write this model as a functional difference equation in

the ordered Banach space CY = {¢: (-»,0] » X|] ¢ continuous and

. . 8 . .
there exists llme_,_weY $(@))}. 1If we restrict the linear operator
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0 6
D: CY + X to the form D¢ = ¢(0) - [ e A(B)9(6)d®, with the map

0
o J eYeA(9)¢(9)d9: CY + X being completely continuous and

order-preserving, then'we get all of the above results, especially
Theorems 6 and 7. From this we can get threshold results for the
spatial model that are sharper %han those of Diekmann [3], without
the monotonicity assumption of Thieme [14, p. 103, p. 94].

For the S > I » S model, where infected: can recover, it
should be possible to prove the existence of periodic solutions,
via Hopf bifurcation, when the spectrum of the difference operator
D(k) given by

0

0
D(K)$ = ¢(0) - k [ e a(8)0(8)d0 + f e ®c(e)0 (8)a0

- 00

depends appropriately on the parameter k. Smith [13], among others,

has investigated the existence of periodic solutions above the

threshold.
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